Successful Coronal Heating and Solar Wind Acceleration by Mhd Waves by Numerical Simulations from Photosphere to 0.3au

نویسنده

  • Takeru K. Suzuki
چکیده

We show that the coronal heating and the acceleration of the fast solar wind in the coronal holes are natural consequence of the footpoint fluctuations of the magnetic fields at the photosphere by one-dimensional, time-dependent, and nonlinear magnetohydrodynamical simulation with radiative cooling and thermal conduction. We impose low-frequency (< 0.05Hz) transverse photospheric motions, corresponding to the granulations, with velocity 〈dv⊥〉 = 0.7km/s. In spite of the attenuation in the chromosphere by the reflection, the sufficient energy of the generated outgoing Alfvén waves transmit into the corona to heat and accelerate of the plasma by nonlinear dissipation. Our result clearly shows that the initial cool (10K) and static atmosphere is naturally heated up to 10K and accelerated to ≃ 800km/s, and explain recent SoHO observations and Interplanetary Scintillation measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coronal heating and wind acceleration by nonlinear Alfvén waves – global simulations with gravity, radiation, and conduction

We review our recent results of global onedimensional (1-D) MHD simulations for the acceleration of solar and stellar winds. We impose transverse photospheric motions corresponding to the granulations, which generate outgoing Alfvén waves. We treat the propagation and dissipation of the Alfvén waves and consequent heating from the photosphere by dynamical simulations in a self-consistent manner...

متن کامل

Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfvén waves from photosphere to 0.3AU

We show that the coronal heating and the fast solar wind acceleration in the coronal holes are natural consequence of the footpoint fluctuations of the magnetic fields at the photosphere, by performing one-dimensional magnetohydrodynamical simulation with radiative cooling and thermal conduction. We initially set up a static open flux tube with temperature 10K rooted at the photosphere. We impo...

متن کامل

Solar Winds Driven by Nonlinear Low-Frequency Alfvén Waves from the Photosphere : Parametric Study for Fast/Slow Winds and Disappearance of Solar Winds

We investigate how properties of the corona and solar wind in open coronal holes depend on properties of magnetic fields and their footpoint motions at the surface. We perform one-dimensional magnetohydrodynamical (MHD) simulations for the heating and the acceleration in coronal holes by low-frequency Alfvén waves from the photosphere to 0.3 or 0.1AU. We impose low-frequency ( < ∼ 0.05Hz) trans...

متن کامل

Universality and Diversity of Solar Winds Driven by Nonlinear Low-Frequency Alfvén Waves from the Photosphere -Fast/Slow Winds and Disappearance of Solar Winds-

We investigate how the properties of the corona and solar wind in the open coronal holes depend on the properties of the magnetic fields and their footpoint motions at the surface. We perform one-dimensional magnetohydrodynamical (MHD) simulations for the heating and the acceleration in the coronal holes by low-frequency Alfvén waves from the photosphere to 0.3 or 0.1AU. We impose low-frequency...

متن کامل

Nonlinear evolution of parallel propagating Alfvén waves: Vlasov - MHD simulation

Nonlinear evolution of circularly polarized Alfvén waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landaufluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfvénic turbulence both in the linear and nonlinear stages. The present Vlasov-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005